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1. INTRODUCTION

Splines are used commonly in drive train applications to connect components carrying
torque such as shafts, gears, clutches, couplings and other structures including planetary
carriers. As a simple example of a spline joint in a drive train application, consider
a shaft-gear pair shown in Figure 1. Here, both the shaft and the gear (or any other
component splined to the shaft) are assumed to de#ect only at the spline teeth. A total
number of n external teeth machined on the shaft mate with n internal groves at the bore of
the gear forming a positive engagement between two bodies ensuring proper transfer of the
torque.

For an idealized case when there is no clearance (backlash) between the two bodies as in
the side-bearing-,t-type splines [1] and the teeth are machined with no circumferential
position (spacing or indexing) errors, all n teeth will be in contact sharing equal amounts of
load. In this ideal case, the torsional sti!ness of the spline joint is constant, and it is
signi"cantly larger than other sti!ness values in the system such as those of the gear mesh
and shaft torsion. In such cases, it is customary to neglect the #exibility of the spline joint in
torsional dynamic models assuming that the shaft is rigidly connected to the gear.
Meanwhile, a great majority of the real-life automotive, aerospace and industrial
applications di!er from the above-idealized case for two reasons. First of all, most spline
joints have backlash that is designed primarily for assembly purposes, as it is the case in
major diameter-,t and minor diameter-,t-type splines [1]. This introduces a clearance-type
non-linearity similar to the other common mechanical components such as gear pairs,
linkages, rolling element bearings, clutches and couplings (see, e.g., references [2}8]) even if
all spline teeth are spaced equally and are of equal thickness. Secondly, the circumferential
tooth position errors originated from the machining process and heat treatment distortions
prevent each teeth from coming into contact at the same time resulting in a torsional
sti!ness coe$cient that is dependent on the amplitude of the relative displacement.

In modelling drive trains, spline joints have traditional been assumed to be rigid. To this
author's best knowledge, the literature lacks any generalized and practical formulation of
a spline joint that includes the common features such as clearance (backlash) and
circumferential tooth #ank position errors. Accordingly, the objective of the
communication is to propose a piecewise linear dynamic model of a spline joint subjected to
both backlash and tooth position errors. The equation of motion and the piecewise linear
displacement function will be obtained in dimensionless form. For cases with a large
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Figure 1. A shaft-gear pair with a spline joint.
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number of spline teeth, a generalized approximation that reduces the piecewise linear
displacement function into a piecewise non-linear one will be proposed. Accuracy of this
approximation will be demonstrated using a case of linearly varying tooth spacing errors.

2. FORMULATION

For a general case when the spline contains both backlash and tooth spacing errors, each
tooth of the external spline i has a di!erent amount of clearance at the front (loaded) and
back #anks, b

i
and b@

i
, respectively, as shown in Figure 1. As a result of this, when the joint is

loaded, "rst the tooth with smallest clearance should come to contact followed by the others
in an order based on the magnitude of their clearance values. Then, only a portion of n teeth
at the joint will be in contact if the mean torque transmitted results in spline tooth
de#ections less than the largest clearance in the system. This results in a piecewise linear
displacement function in the regime where the number of teeth in contact r is less than the
total number of spline teeth, n.

The equation of motion of the gear splined compliantly to a shaft as shown in Figure 1 is
given as

I
d2h
dt2

#c
t

dh
dt

#k
t
g[h (t)]"¹(t), (1)

where I is the polar mass moment of inertia of the gear, c
t
is the overall torsional viscous

damping coe$cient of the spline joint, k
t
is the torsional sti!ness due to a single spline tooth

contact, h(t) is the angular displacement of the gear, and ¹ (t) is the torque acting on the gear
including its mean and alternating components. The non-linear displacement function
g[h (t)] that will be de"ned later is employed to represent the non-linearities caused by the
spacing errors and overall spline backlash. The equation of motion can be put in the
following standard format by introducing u2

n
"k

t
/I and f"c

t
/(2Iu

n
):

d2h
dt2

#2fu
n

dh
dt

#u2
n
g[h (t)]"

¹(t)

I
. (2)



330 LETTERS TO THE EDITOR
In order to describe the problem in hand more clearly, one can consider the equivalent
translational model shown in Figure 2, in which the rotational components are replaced by
the equivalent translational components. Now, an n number of cantilever teeth mounted on
a block representing the gear are lined up in a row against grooves on another block
representing the shaft that is held stationary. With the translational displacement
y(t)"r

p
h (t) as the new coordinate, where r

p
is the pitch circle radius of the spline,

equation (2) is rewritten as

d2y (t)

dt2
#2fu

n

dy

dt
#u2

n
g[y (t)]"f (t), (3)

where f (t)"r
p
¹ (t)/I. The displacement function g[y(t)] is formed by n individual

piecewise-linear displacement functions g
i
[y (t)] shown in Figure 2, each representing one of

the teeth in the interface. Given constant values of tooth thickness of the external spline
p and the magnitude of the internal spline gap P, the clearances of tooth i at the right
(loaded) and left (unloaded) #anks must satisfy the condition

b
i
#b@

i
"P!p, i"1, 2,2, n. (4)

Since the system is one dimensional, the spline teeth can be sorted based on their clearance
such that

b
n
*b

n~1
*2*b

3
*b

2
*b

1
"a. (5)

Then, given equations (4) and (5), the clearances on the left #anks must satisfy the conditions

b@
1
*b@

2
*b@

3
*2*b@

n~1
*b@

n
"a. (6)

It is clear from equations (5) and (6) that the lower block in Figure 2 is in a relative initial
position such that there is an equal amount of minimum clearance a at both sides indicating
that the total backlash is equal to 2a. By de"ning b

i
"b

i
!a and b@

i
"b@

i
!a, i"1, 2,2, n,

one obtains

b
n
*b

n~1
*2*b

3
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2
*b

1
"0, b@

1
*b@

2
*b@

3
*2*b@

n~1
*b@

n
"0. (7a, b)

Accordingly, when Dy (t) D(a, none of the teeth are in contact resulting in g[y (t)]"0 in
equation (3). Similarly, for (b

n
#a))y (t) or !(b@

1
#a)*y (t) all teeth are in contact
Figure 2. The equivalent translational model of a spline.
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resulting is a linear g[y (t)]. However when y (t) is such that none of the above conditions are
met, then the number of loaded teeth r is less than n and hence g[y (t)] is characterized by
a piecewise linear function. With all possible values of y (t), g[y (t)] becomes

g[y(t)]"

i
g
g
g
j
g
g
g
k

n[y (t)!a]!
n
+
i/1

b
i
, (b

n
#a))y(t),

r[y(t)!a]!
r
+
i/1

b
i
, a)y(t)((b

r
#a),

0, !a(y(t)(a,

!r[ Dy(t) D!a]#
r
+
i/1

b@
n`1~i

, !(b@
n~r

#a)(y(t))!a,

!n[ Dy (t)!a]#
n
+
i/1

b@
i
, y (t))!(b@

1
#a).

(8)

A dimensionless form of the equation of motion (3) can be obtained by introducing
a dimensionless time q"u

n
t and a dimensionless displacement x (t)"y (t)/a:

xK (q)#2fxR (q)#G[x (q)]"F (q), (9a)
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(9b)

where a
i
"b

i
/a and a@

i
"b@

i
/a, i"1,2, n. In Figure 3, the dimensionless form of an

equivalent translational spring-mass system is shown, and G[x (q)] is illustrated
qualitatively to demonstrate each regime forming equation (9b).

3. APPROXIMATE FORM OF THE DISPLACEMENT FUNCTION

Although equation (9) represents a spline joint with backlash and circumferential tooth
position errors accurately, its direct use presents di$culties, especially for splines with
a large number of teeth n. Each one of the two piecewise linear regions of G[x(q)] shown in
Figure 3(b) is divided into n!1 linear segments. Accordingly, G[x (q)] in equation (9b) is
de"ned by a total of 2n#1 such segments including the backlash. For instance, for a spline
with n"20, 41 individual piecewise linear segments de"ne G[x(q)]. In addition, number of
teeth in contact r is dependent on the amplitude of x (q), which complicates the
implementation of equation (9b) even further. Therefore, it is rather impractical to use the
exact form of G[x (q)] unless n is relatively small, say n(5.

For large n, the piecewise linear regions of G[x (q)] shown in Figure 3(b) can be
approximated by continuously nonlinear functions [9]. In Figure 4, the contacts on the
right tooth #ank of the translational model shown in Figure 3(a) are reproduced by de"ning



Figure 3. (a) Dimensionless translational representation of a spline with arbitrary tooth spacing errors;
(b) graphical illustration of the piecewise linear displacement function G[x(q)].
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x@"x!1 and another z-axis perpendicular to the x@-axis. Here, the sti!ness of each spring is
distributed over a length 1/n along the z-axis. For any given displacement x@, the area of the
region between x@-axis and the stepwise pro"le de"ned by the ends of the unstretched springs
(shaded area) represents the exact value of the displacement function. Approximating the
stepwise pro"le as a continuous function z"H(x@), the same area can be described as

G[x@ (q)]"nP
x{

0

H(x@) dx@. (10)

By applying the above equation to any given tooth position error con"guration, the
piecewise linear regions of Figure 3(b) can be replaced by continuous non-linear functions.



Figure 4. Illustration of the approximation to the piecewise linear G[x(q)]. Only the right #anks of the teeth are
shown for clarity.
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Using the current spline inspection techniques available, an approximate of z"H (x@) can
be determined by inspecting a small portion of the n teeth in the spline joint, making the use
of equation (10) even more practical.

In order to demonstrate how to use equation (10), consider a case of uniformly varying
tooth position errors illustrated in Figure 5. Such errors result when the spacing angle of the
teeth on one the mating spline parts (the gear or the shaft) is machined consistently larger
(or smaller) than the nominal dimension. When such a splined part mates with an accurate
counterpart, the spacing errors follow a uniform, linearly varying pattern as shown in
Figure 5, i.e., a

i
"(i!1)a. Consequently, the approximate pro"le z"H (x@) is a straight line

given as

z"H(x@)"
1

nA
x@
a
#

1

2B, (11)

yielding the approximate form of the displacement function in piecewise linear regions for
positive values of x@"x!1:

G[x(q)]"
(x!1)2

2a
#

(x!1)

2
. (12)

Using the same formulation for negative values of x@"x!1, the exact form of G[x(q)]
given in equation (9b) can be approximated by the piecewise non-linear function
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Figure 5. An example of uniformly varying tooth position errors.

Figure 6. (a) Comparison of exact and approximate forms of G[x(q)] for a case of uniformly varying tooth
position errors; n"5 and a"0)5; (b) zoomed view of a segment in the piecewise linear region: (s), Exact; (**),
approximate.
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where

n
+
i/1

a
i
"

n
+
i/1

(i!1)a"C
n (n#1)

2
!nDa.

In Figure 6(a), the exact and approximate forms of G[x (q)] as de"ned by equations (9) and
(13), respectively, are compared for a spline having n"5 with uniformly varying errors of
a"0)5. Both curves are identical in the region of the backlash (!1(x (q)(1) and in the
regions where all teeth are in contact (Dx(q)D'3), as expected. Within the two regions in
between (1(Dx(q)D(3), both piecewise linear (exact) and piecewise non-linear
(approximation) curves are very close suggesting that the approximate form de"ned by
equation (10) is valid. The slight di!erence is illustrated in Figure 6(b) that is obtained by
blowing up a portion of Figure 6(a) where the di!erences are the most obvious. It is also
evident from Figure 6 that the accuracy of the approximate curve should improve further
for splines with larger n.

It is obvious that modelling a spline in a form as given above introduces a type of
non-linear system that has not been studied in detail in the past. While continuously
non-linear and simple piecewise linear or bi-linear systems have been studied extensively,
piecewise non-linear systems like the one de"ned above by equation (13) for a spline joint
have attracted very limited interest [10, 11]. The current research of this author includes
deriving analytical solutions to the formulation presented here and also incorporating it in
the dynamic analysis of multi-degree-of-freedom drive train systems.

4. CONCLUSION

In this study, a piecewise linear dynamic model of a spline joint subjected to
both backlash and circumferential tooth position errors is proposed. The equation
of motion with a piecewise linear displacement function is obtained in the dimensionless
form. For cases with a large number of spline teeth, a generalized approximation that
reduces the piecewise linear displacement function into a piecewise non-linear one is
proposed, and its accuracy is demonstrated using a case of linearly varying tooth position
errors.
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